Introduction to Speech Recognition

oy LUOPingfeng

2020.03.01

Outline

* Introduction to speech recognition

* What

* How

* History

* Application

* The basics

* Basic theory
* Noisy channel model and MAP
* Acoustic model
* Language model
* Speech recognition architecture
* Decoder
* Wfst-based search network
* Viterbi Algorithm
* Engineering optimization
* Low resource speech recognition
* Time division multiplex buffer
* Quantize neural network
* Optimize Viterbi algorithm
* Key results of my work
* Remaining problems

What?

The task of speech recognition is to convert speech into a sequence of words by a computer program

Concept: a sequence of symbols

s, s,)
")) Ao e,
bbb
10000

~

Parameterise[

Speech
Vectors

Recognise —m

—
i

w

......

Pronunciation
lexicon

Data for training

/

\ N

7 modelling

Acoustic
modelling

Pronunciation

Speech

i

£ >

Acoustic model
w

<

Language

Pronunciation
model

.-

Language

modelling

Model training

model

!

Acoustic signal
analyzer

Decoder

Speech recognizer

Text

Rough history?

Thomas Bayes (1701-1761)

A A Mapeon (1886).

Claude Shannon (1916-2001)

AA Markov (1856-1922)

* HMM (Baum, 1972; Baker, 1975;Jelinek, 1976) is one of the most common types of acoustic models

* Segmental models including neural networks (Lippman,1987; Morgan et al., 2005), maximum entropy models
(Gao and Kuo, 2006), and (hidden) conditional random fields (Gunawardana et al., 2006)

* Deep learning break through (DNN-HMM, CTC, Encoder-Decoder, Attention..., 2009-now)

Application?

* dictation

* voice input

* voice dialing

* voice user interface

* intelligent assistant

* computer-aided language learning

Noisy Channel Model

noisy chann[&

source sentence

If music be
the food of love...

decoder
Every happy family W‘ neisy]

In a hole in the ground ;"Wa)

If music be the food of loveww)\j

guess at source:

If music be
the food of love...

Noisy Channel Model

How to find the most likely sentence W out of all sentences L
given acoustic input O?
* Treat acoustic input O as sequence of individual observations
* O=04,0,,03,...,0;
* Define a sentence as a sequence of words
* W=wW,;W,Wj,...,W,

Noisy Channel Model

* Probabilistic implication:

VN

W =argmax P(W 10)

WeL

* We can use Bayes rule:

W — argmax PO WPV
wel P(0)

e Since denominator is the same for each candidate sentence W, we
can ignore it for the argmax:

A

W =argmax P(O |W)P(W)

welL
Likelihood Prior

Acoustic Model

The likelihood P(O|W) is computed by the acoustic model, this model includes the representation of
knowledge about acoustics, phonetics, microphone and environment variability, etc.

For the HMM-based acoustic model rewrite

Transcription: Samson
. Pronunciation: S-AE-M-S-AH-N
P(OIW) o Z P(O.S|W) Sub-phones : 942 — 6 —37 — 8006 — 4422 ...
SesT
S is a hidden state sequence in HMM. Hidden Markov

Model (HMM):

Acoustic Model: |/ [A
‘. I C I .\
[A\ | A /‘/ \VAN

[Features] [Features] [Features]

EM Iteratively to solve HMM-based acoustic model
E : Generate a forced alighment with existing model

Viterbi decoding with a very constrained prior (the transcript)
Assigns observations to HMM states

M : Create new observation models from update alignments

Language Model

The prior P(W) is computed by the language model, this model includes knowledge of what constitutes a
possible word, what words are likely to co-occur, and in what sequence.
P(W) = Pw)P@wlw)...Pwylw™")

M
= [Pwnlwi™).

m=1

In the n-gram model, the conditional probability is approximated by truncating the history into the previous n -
1 words.

M
P(W) = 1—[P(wmlw:;::rlt-i—l)

m=1
The maximum likelihood estimate of the n-gram probability can be obtained using a text corpus as

_ C(wl)
P(walw]™") = —1—
C(wy)

Speech Recognition Architecture

* Feature Extraction:
« “MFCC/PLP” spectra features

* Acoustic Model:
* HMM for computing P(O| W)

* Lexicon/Pronunciation Model
e what phones this W pronounces

* Language Model
* N-grams for computing P(W)

* Decoder
* Viterbi or A*stack algorithm to find the most likely word sequence W

12

Speech Recognition Architecture

|
Wil ‘
cepstral
feature
extraction
S —
O ————— MFCC features
Gaussian
Acoustic Model

Viterbi Decoder /

W v

N-gram -~
language
model

-~ if music be the food of love...

Decoder

The task of decoder is given a observation O = (0,0,...07) finding the
most likely words W = (w,,w,...w,) by acoustic and language models

A

W =argmax P(O |W)P(W)

WeL Acoustic Language

Decoder

* Represent components in speech recognition as WFSTs:
* H: HMM structure (Acoustic model)
* C: Phonetic context dependency (Context dependence phone)
 L: Lexicon (Pronunciation dictionary)
* G: Grammar (Language model)
* The decoding network is composition of these models : HeColL-G

* Successively determinize and combine the component transducers, then minimize the final
network

Decoder - WFST Algorithm

Composition: combine transducers at different levels

If G is a finite state grammar and L is a pronunciation dictionary, L ° G transduces a phone string to
word strings allowed by the grammar

Determinization: Ensures each state has no more than one output
transition for a given input label

Minimization: transforms a transducer to an equivalent transducer
with the fewest possible states and transitions

Decoder - WFST Algorithm

combining cascade wfst-based models into one

Lexicon
one wahn
two tuw
three thriy
four faor
five fayv Phone HMM
Six sihks
seven sehvaxn
eight eyt O O O
nine nayn
zﬁro ziyrow . @ @ @ .
P Py W M

Decoder

* One possibility:
* For each state sequence S in WFST
* Compute P(W | O)
* Pick the highest sequence
* Why not?
* O(NT)
* Instead:
* The Viterbi algorithm O(N?T)
* |s a dynamic programming algorithm

Decoder - Viterbi Algorithm

* The posterior P(W | O) can be factored into word-level score as

W = argmax Zp(O.S|W)P(W)
Wew SeSy

Mw

j— Im Im m—1
= argmax Z l_[p(ot,,,_1+1'st,,,_l-l—l|w"')P(w'"|w1)
WeWw SeSw m=1

* Make the “Viterbi Approximation”

W o= argmax{max p(O,SlW)P(W)}
WeWw SeSw

Mw
‘ 1 , m—1
= argm‘lxl max l_[p(ot":_lH, s,,'r’,'_l_i_l|w,,,)P(w,,,|w1)l

SeS
WeWw w m=1

where p(of, s/ |w) denotes the likelihood that the model of word w generates the speech segment
O; .. .0, along the state transition process s; ... ;. Sw denotes a set of possible state sequences for
W. 1, represents the ending frame of word w,,, which is determined by the state sequence S, i.e.,
the requirement that s;, is a final state in the model of w,, and s;, 41 is an initial state in the model
of wy, 41 is satisfied. Here we assume 79 = 0.

Decoder - Viterbi intuition

Define S =(q0, q1, ... qT), O = (00, o1,...0T)
Process observation sequence O by time frame t

Filling out the trellis

* Each cell:
v(j)= max P(qo0,q1.--91—1,01,02...0¢,qr = j|A)
904111
vi(j) = maxv,_1(i) a;j bj(o;)

1=

v;_1(i) the previous Viterbi path probability from the previous time step
ajj the transition probability from previous state ¢; to current state ¢;

bj(or) the state observation likelihood of the observation symbol o; given
the current state j

Decoder - Viterbi Recursion

1. Initialization:

vi(j) = aojbj(o1) 1< j<N
bri(j) = 0

2. Recursion (recall that states O and gF are non-emitting):

N
vi(j) = maxv,1(i)a;jbj(o;); 1<j<N,1<t<T

1=

N
b1, (j) = argmaxv,_1(i)a;jbj(o;); 1<j<N,1<t<T
i=1

3. Termination:

N

The best score: Px=v;(qr) = max vr(i)*a;F
1=
N _
The start of backtrace: ¢r* =Dbir(qr) = argmax vr(i)=*a;F

i=1

Decoder - The Viterbi trellis

[e1S l’\end\) l’\end) l’\end\)
\‘\ \\\
v,(2)=.32 v,(2)= max(.32*.014, .02*.08) = .0448 | ~|
I‘ !
PR ’ !
O —__ P(HIH) * P(1IH) AT o
2 W A 72 *@ !
— Thy) p . :
AL S T !
3 v\\ R "
&) = .32*.157 . N =.
& v,(1) = .02 Lo\ v,(1) = max(32/15, oz*s\q)\ 048 /
PR (Db*v ?\\)\\O\ x 2 - - Sso J
a e N Q@ _—__P(CIC) " P(1IC) e > -
A b4 6*.5
- O
&
QA
X
o

T T L
’

do | start) | start) | start)

\ / \ / \ /

~

3

Engineering optimization

Rule of thumb for data-intensive computing is to place computation where the data is,
instead of moving the data to the point of computation.

Time division multiplex buffer

Recorder, Feature extractor, Neural network... these modules use different buffer, if they can share same buffer, we
can save much memory for mobile or embed devices.
But the problem is these modules own different data type (voice is int16, feature is float, neural network is

float/int8).

«— INT16
cepstral
feature
extraction
0. — — «— Float

Gaussian
Acoustic Model «— | NTS
- P(W)

N-gram
language
model

P(O'W)"ﬁ"”
N likelihoods

‘ /
.
~o 7

HMM lexicon

Viterbi Decoder

W““‘~~if music be the food of love...

Time division multiplex buffer

So we create a typeless buffer and share between all modules, and make buffer typed only when special module use
it, by this way we can merge original multi-buffer for many modules into one and save times memory.

And it also computation efficient, because when doing computation the previous module already put the data to
where the current module computation performing (Rule of thumb for data-intensive computing).

Multi-Type-Buffer
Share-Typeless-Buffer

Feature extractor ‘ Share typeless buffer
(FLOAT) with type reinterpret

Neural network
(INT8)

Time division multiplex buffer (I1)

In neural network forward computation, ordinary, each layer of neural network own its computation-buffer for
input/output/cache, but when layer's number is large this will take much memory. To save memory, we use a input-
output-switch-buffer that is when doing forward computation layer by layer we switch the input and output role for

the buffer and shared between all layers in the netwrok.
By this way we also save much memory, and when doing computation the previous layer already put the data to
where the current layer computation performing, so the input-output-switch-buffer also computation efficient (Rule

of thumb for data-intensive computing again).

INPUT-OUTPUT-SWITCH-BUFFER

SWITCH

OUTPUT

Quantized Math

Quantize a math number

X float = Xscale X (xquantized — Xzero _point)

Calculate the scale

min max
X float € [xfloat’xfloat]
max __ ..min
. X float X float
Xscale = xmax _ xmin
quantized quantized

. _ max _ max .
Xzero_point = xquantized xfloat ~ Xscale

Xquantized = X float =~ Xscale + Xzero_point

Quantized Arithmetic

Z float

= Xfloat * Yfloat

Zscale * (zquantized — Zzero _point) =

zquantized — Zzero _point

Zguantized
Multiplier, ,, ,

Zquantized

__ Xscale * Yscale

(xscale : (xquantized — Xzero _point)) : (.Vscale : (J’quantized — Yzero _point))

Xscale * Yscale * (xquantized — Xzero _poim‘) : (}’quantized — Yzero _point)

‘ (xquantized — Xzero _point) ‘ (yquantized — Yzero _point)
Zscale

Xscale * YVscale

2 : (xquantized — Xzero _point) : (,unantized — Yzero _point) + Zzero _point
scale

Xscale * Yscale

Zscale

Mult lpller X3z (xquantized — Xzero _point) : (yquantized — Yzero _point) + Zzero _point

Quantize neural network model

Goal: Convert FP32 Neural network to INT8 Neural network without significant accuracy loss

Why: INT8 math has higher throughput, and lower memory requirements

Challenge to Quantize neural network model

1.INT8 has significantly lower precision and dynamic range

Dynamic Range Min Positive Value \

FP32 -3.4x10% ~ +3.4 x 10%8 1.4 x10%
FP16 -65504 ~ +65504 5.96 x 10°®
INT8 -128 ~ +127 1

2.Number distribution is unsymmetric, loss accuracy when encode FP32 to INT8

-|max| 0.0- +|max| -| T} 0.0- +|T|
~$8— 909836909696 396 —9¢9¢ -$8—9898— 96— ——96- 94— 3¢

3900369696 3008906 ———————53-26-9¢ 93000 30¢

-127 0 127 -127 (O 127

3.Not all operations in neural network can be quantized, need quantizing/dequantizing between layers

Quantize neural network model

Since FP32 = INT8 is re-encoding information, how to optimize the quantizing threshold than minimize information
loss?

Using KL_divergence to measure loss of information.

P, Q - two discrete probability distributions.

KL divergence (P,Q) := SUM(P[i] * log(P[i] / Q[i]), 1)

Solution: Run FP32 inference on a Dataset, collect histograms of activations and generate quantized distributions
with different saturation thresholds, than pick threshold which minimizes KL_divergence(ref distr, quant_distr).

Quantize neural network model

Entropy Calibration - pseudocode

Input: FP32 histogram H with 2048 bins: bin[0], ..., bin[2047]

Foriinrange(128, 2048):
P=[bin[0], ..., bin[i-1]]// reference_distribution
outliers_count =sum(bin[i], bin[i+1], ..., bin[2047])
P[i-1] += outliers_count

P /= sum(P) // normalize distribution P
Q = quantize [bin[0], ..., bin[i-1]] into 128 levels // candidate_distribution expand Qto ‘i’ bins
Q /=sum(Q) // normalize distribution Q
divergence[i] = KL_divergence(P, Q)
End For

Find index ‘m’ for which divergence[m] is minimal threshold = (m + 0.5) * (width of a bin)

Optimize Viterbi algorithm

* Viterbi is O(N2T)

* Nis number of WFST states, T is frames length
* Methods to make Viterbi search faster

e Beam search (pruning)

* Weight push (early pruning)

* Tree-based lexicons (reduce search space)

* Cache Wfst operations

Beam search

* Instead of retaining all candidates (cells) at every time frame

* Use a threshold T to keep subset:
e Ateachtime't
* |dentify state with lowest cost Dmin

e Each state with cost > Dmin+ T is discarded (“pruned”) before moving on to
time t+1

* Unpruned states are called the active states

Key results of our work

ASR engine performance overview

base total memory RTF ACC
model

kaldi 410KB 3.5MB 0.035 94.75%

petrel_lite (our) 410KB 460KB 0.017 94.74%

petrel_lite is efficient by using Time-Division-Multiplex-Buffer, Model Compression and Viterbi Path recycling

Remaining problems

* Low resource ASR — with no significant ACC loss compare to high resource ASR

* Robustness and Adaptability — noise, distance, accent
* Confidence Measures — better methods to evaluate the correctness of hypotheses

e Out-of-Vocabulary (OOV) Words — dealing OOV in a sensible way
e Dialect and Mixed language

Any questions ?

Thank you for your attention!

